Cập nhật thông tin chi tiết về Định Lý Pitago (Pythagoras Theorem) mới nhất trên website Tvzoneplus.com. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất.
Định lý được phát biểu đơn giản như sau: Từ các cạnh của một tam giác vuông ta dựng các hình vuông, khi đó diện tích hình vuông lớn sẽ bằng tổng diện tích hai hình vuông nhỏ. Nếu ta gọi độ dài các hai cạnh góc vuông là và độ dài cạnh huyền là thì:
Có rất nhiều cách chứng minh định lý Pitago được nêu ra từ lúc nó xuất hiện đến nay, các bạn cũng có thể tự mình chứng minh được bằng nhiều cách khác nhau. Ở đây tôi chỉ đưa ra một vài cách chứng minh bằng diện tích qua một số hình ảnh sau:
Ứng dụng nhiều nhất của định lý Pitago là dùng để tính toán các đại lượng hình học, trường hợp đơn giản nhất là tính toán độ dài cạnh còn lại của một tam giác vuông nếu biết độ dài hai cạnh kia.
Một vài ví dụ về áp dụng định lý Pitago để tính toán.
Ví dụ 1. Cho độ dài 3 cạnh của tam giác vuông, tính x.
Ví dụ 2. Cho độ dài các cạnh của hình chữ nhật, tính x.
Định lý Pitago còn dùng để tính độ dài của một đoạn thẳng khi biết tọa độ hai đầu mút, bằng công thức sau:
Sử dụng định lý Pitago ta có thể chứng minh công thức đường trung tuyến của tam giác như sau:
,
Một trong những mở rộng của định lý Pitago là định lý cosin trong tam giác: “Cho tam giác ABC, đặt thì “.
Có nhiều cách chứng minh cho định lý cosin, trong đó có một cách là dùng Pitago và tỉ số lượng giác.
Ta xét tam giác ABC có góc A nhọn. Vẽ đường cao BD (D thuộc cạnh AC). Khi đó
Mà
Do đó
Một số trường hợp riêng của định lý Cosin
– Nếu ta có định lý pitago
– Nếu ta có
– Nếu ta có
Một số ví dụ áp dụng
Ví dụ 3. Cho tam giác ABD đều cạnh , D là điểm thuộc cạnh BC sao cho . Đường trung trực của AD cắt AB tại P, AC tại Q. Tính theo độ dài đoạn PQ.
Ví dụ 4. Cho tam giác ABC đều nội tiếp đường tròn tâm O bán kính R. D là điểm thuộc cung nhỏ BC. Chứng minh rằng giá trị biểu thức không phụ thuộc vào vị trí của điểm D.
Định lý Pitago còn dùng để chứng minh một hệ thức lượng giác cơ bản: .
Tiếp theo, ta sẽ sử dụng định lý Pitago để tìm bán kính mặt cầu ngoại tiếp hình chóp, mà cụ thể là hình tứ diện.
Bài toán. Cho hình chóp chúng tôi biết hình chiếu của S trên AB là H, I là tâm đường tròn ngoại tiếp tam giác ABC. Cho SH = h, bán kính đường tròn ngoại tiếp tam giác ABC là r, IH = d. Tìm bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC.
Gọi O là tâm mặt cầu ngoại tiếp tứ diện chúng tôi Ta có . Khi đó OI song song SH, gọi K là hình chiếu của O trên SH thì OK = IH = d. (H thuộc đoạn HS hoặc nằm ngoài SH)
Đặt . Ta có ,
Từ đó ta có phương trình . Giải phương trình ta sẽ tìm được , từ đó suy ra
Ngoài cách tổng quát trên, có một số trường hợp riêng.
Trường hợp 1. H trùng I, khi đó O là giao điểm đường trung trực SA và SH.
Trường hợp 2. H trùng đỉnh của tam giác ABC. Khi đó
Định lý Pitago còn nhiều ứng dụng khác, và các mở rộng khác, tuy nhiên trong bài này chỉ nêu một vài ứng dụng cơ bản và quen thuộc trong chương trình phổ thông.
Chủ đề tiếp theo: Tam giác và các hình vuông dựng trên cạnh
Share this:
Like this:
Số lượt thích
Đang tải…
Định Lý Pitago Là Gì? Cách Sử Dụng Định Lý Pitago
1, NHẬN THỨC CHUNG ĐỊNH LÝ PITAGO
Như các bạn đã biết trong chương trình môn Toán học lớp 7 chúng ta đã được tiếp xúc với khái niệm định lý Pitago vậy câu hỏi đặt ra định lý Pitago là gì và được ứng dụng như thế nào.
Nội dung định lý Pitago được phát biểu như sau:
Đây là Khái niệm định lí Pytago mà bạn thường gặp gặp ngoài ra còn có định lý Pitago đảo có nội dung như sau:
Nếu trong một tam giác bất kỳ có bình phương của một cạnh bằng tổng bình phương của hai cạnh còn lại thì tam giác đã cho là tam giác vuông.
2, VÍ DỤ MINH HỌA CÁCH SỬ DỤNG ĐỊNH LÝ PITAGO
Ví dụ 1: Nếu nếu độ dài hai cạnh bên của một tam giác vuông tăng lên lần lượt 2, 3 lần thì độ dài của cạnh huyền của tam giác vuông đã thay đổi như thế nào?
Hướng dẫn giải:
Ta gọi Gọi b, c lần lượt là độ dài của hai cạnh bên của tam giác vuông
a là độ dài cạnh huyền của tam giác vuông khi đó áp dụng định lý Pitago ta có công thức:
Mà theo đề bài ta có độ dài hai cạnh bên của tam giác vuông tăng lên lần lượt là 2 lần khi đó ta có b ‘ = 2b và c ‘ = 2c
Vậy kết luận khi tăng độ dài các cạnh bên của tam giác vuông lên 2 lần thì độ dài cạnh huyền cũng tăng lên 2 lần.
Tương tự khi tăng độ dài các cạnh bên của tam giác vuông lên 3 lần thì độ dài cạnh huyền cũng tăng lên 3 lần.
Ví dụ 2: Cho tam giác vuông ABC vuông tại A Gọi M là trung điểm của AB. Kẻ MH vuông góc với BC tại H hát chứng minh CH 2 – BH 2 = AC 2
Nối C với M ta được tam giác vuông CHM
Mà MA = MB do M là trung điểm của AB
Suy ra điều phải chứng minh.
Ví dụ 3: Cho tam giác thường ABC có AH vuông góc với BC trong đó H thuộc cạnh BC. Tính chu vi của tam giác ABC biết AC = 10 cm AH = 8 cm BH = 4 cm.
Hướng dẫn giải:
Theo điều kiện bài toán ta có hình vẽ như sau:
Tương tự trong tam giác ACH vuông tại H
BC = BH + HC = 4 + 6 = 10 cm
Vậy chu vi của tam giác ABC bằng:
Định Lý Pitago Mở Rộng. Các Cách Khác Nhau Để Chứng Minh Định Lý Pitago
Định lý Pitago là phát biểu quan trọng nhất của hình học. Định lý được xây dựng như sau: diện tích của một hình vuông được xây dựng trên cạnh huyền của một tam giác vuông bằng tổng diện tích của các hình vuông được xây dựng trên chân của nó.
Định lý Pythagore
.Công thức đại số: V tam giác vuông bình phương độ dài cạnh huyền bằng tổng bình phương độ dài chân. Nghĩa là, biểu thị độ dài cạnh huyền của tam giác qua c, và độ dài chân qua a và b: a 2 + b 2 = c 2. Cả hai phát biểu của định lý là tương đương, nhưng phát biểu thứ hai là cơ bản hơn, nó không yêu cầu khái niệm về diện tích. Có nghĩa là, câu lệnh thứ hai có thể được kiểm tra mà không cần biết gì về diện tích và chỉ bằng cách đo độ dài các cạnh của một tam giác vuông. Định lý ngược của Pythagoras. Cứ ba số dương a, b và c, sao cho a 2 + b 2 = c 2, là một tam giác vuông có chân a, b và cạnh huyền c.
Bằng chứng
Trên khoảnh khắc này v tài liệu khoa học 367 chứng minh của định lý này đã được ghi lại. Có lẽ định lý Pitago là định lý duy nhất có số lượng chứng minh ấn tượng như vậy. Sự đa dạng này chỉ có thể được giải thích bởi ý nghĩa cơ bản của định lý đối với hình học. Tất nhiên, về mặt khái niệm, tất cả chúng có thể được chia thành một số lượng nhỏ các lớp. Nổi tiếng nhất trong số đó: chứng minh bằng phương pháp diện tích, chứng minh tiên đề và ngoại lai (ví dụ, sử dụng phương trình vi phân).
Qua các tam giác đồng dạng
Chứng minh sau đây của công thức đại số là chứng minh đơn giản nhất trong số các chứng minh được xây dựng trực tiếp từ các tiên đề. Đặc biệt, nó không sử dụng khái niệm diện tích của một hình. Cho ABC là tam giác vuông cân với góc vuông C. Kẻ đường cao từ C và kí hiệu đáy là H. Tam giác ACH đồng dạng với tam giác ABC ở hai góc. Tương tự, tam giác CBH đồng dạng với ABC. Giới thiệu ký hiệu
chúng tôi nhận được Tương đương là gì
Thêm, chúng tôi nhận được
hoặc
Khu vực chứng minh
1. Đặt bốn tam giác vuông bằng nhau như hình vẽ bên. 2. Một tứ giác có các cạnh c là một hình vuông, vì tổng của hai góc nhọn 90 ° và góc mở ra là 180 °. 3. Diện tích của toàn hình, một mặt là diện tích hình vuông có cạnh (a + b), mặt khác là tổng khu vực của bốn hình tam giác và hình vuông bên trong.
Q.E.D.
Bằng chứng thông qua việc mở rộng quy mô
Ví dụ về một trong những cách chứng minh như vậy được hiển thị trong hình vẽ bên phải, trong đó một hình vuông được xây dựng trên cạnh huyền được biến đổi bằng cách hoán vị thành hai hình vuông được xây dựng trên các chân.
Chứng minh của Euclid
Ý tưởng đằng sau chứng minh của Euclid như sau: hãy cố gắng chứng minh rằng một nửa diện tích của hình vuông được xây dựng trên cạnh huyền bằng tổng của một nửa diện tích của các hình vuông được xây dựng trên chân, và sau đó là các diện tích của hình vuông lớn và hai hình vuông nhỏ bằng nhau. Hãy xem xét hình vẽ bên trái. Trên đó, ta dựng hình vuông trên các cạnh của tam giác vuông và kẻ tia s từ đỉnh của góc vuông C vuông góc với cạnh huyền AB, nó cắt hình vuông ABIK dựng trên cạnh huyền thành hai hình chữ nhật – BHJI và HAKJ, tương ứng. Nó chỉ ra rằng diện tích của những hình chữ nhật này chính xác bằng diện tích của các hình vuông được xây dựng trên các chân tương ứng. Hãy thử chứng minh rằng diện tích của hình vuông DECA bằng diện tích của hình chữ nhật AHJK Để làm được điều này, chúng ta sử dụng một quan sát bổ trợ: Diện tích của một tam giác có cùng chiều cao và đáy với hình chữ nhật này bằng nhau đến một nửa diện tích của hình chữ nhật đã cho. Đây là hệ quả của định nghĩa diện tích tam giác là nửa tích của chiều cao và đáy. Từ nhận xét này, ta thấy rằng diện tích tam giác ACK bằng diện tích tam giác AHK (không có hình bên), nghĩa là diện tích tam giác AHJK bằng nửa diện tích hình chữ nhật. . Bây giờ chúng ta hãy chứng minh rằng diện tích của tam giác ACK cũng bằng một nửa diện tích của hình vuông DECA. Điều duy nhất cần làm là chứng minh sự bằng nhau của các tam giác ACK và BDA (vì diện tích tam giác BDA bằng một nửa diện tích hình vuông theo tính chất trên). Bằng nhau là hiển nhiên, các tam giác bằng nhau về hai cạnh và góc giữa chúng. Cụ thể – AB = AK, AD = AC – bằng nhau của các góc CAK và BAD dễ dàng chứng minh bằng phương pháp chuyển động: ta quay tam giác CAK 90 ° ngược chiều kim đồng hồ thì ta thấy các cạnh tương ứng của hai tam giác đang xét sẽ trùng (vì góc ở đỉnh của hình vuông là 90 °). Lý luận về sự bằng nhau của diện tích hình vuông BCFG và hình chữ nhật BHJI là hoàn toàn tương tự. Như vậy, chúng ta đã chứng minh rằng diện tích của hình vuông được xây dựng trên cạnh huyền là tổng diện tích của các hình vuông được xây dựng trên chân.
Bằng chứng của Leonardo da Vinci
Các yếu tố chính của chứng minh là đối xứng và chuyển động.
Xét hình vẽ, ta thấy đoạn thẳng CI cắt hình vuông ABHJ thành hai phần giống nhau (do các tam giác ABC và JHI bằng nhau). Sử dụng phép quay ngược chiều kim đồng hồ 90 độ, chúng ta thấy rằng các hình tô mờ CAJI và GDAB bằng nhau. Bây giờ rõ ràng là diện tích của hình được tô bóng bằng tổng của các nửa diện tích của các hình vuông được xây dựng trên các chân và diện tích của hình tam giác ban đầu. Mặt khác, nó bằng một nửa diện tích của hình vuông được xây dựng trên cạnh huyền, cộng với diện tích của tam giác ban đầu. Bước cuối cùng trong phần chứng minh được để lại cho người đọc.
Đảm bảo rằng tam giác bạn đưa ra là góc vuông, vì định lý Pitago chỉ áp dụng cho các tam giác vuông. Trong tam giác vuông, một trong ba góc luôn bằng 90 độ.
Góc vuông trong tam giác vuông được biểu thị bằng biểu tượng hình vuông, không phải đường cong, là góc xiên.
Thêm hướng dẫn cho các cạnh của tam giác. Ghi nhãn các chân là “a” và “b” (chân – các cạnh giao nhau ở góc vuông) và cạnh huyền là “c” (cạnh huyền – cạnh lớn nhất của tam giác vuông nằm đối diện với một góc vuông).
Xác định cạnh nào của tam giác bạn muốn tìm.Định lý Pitago cho phép bạn tìm bất kỳ cạnh nào của tam giác vuông (nếu biết hai cạnh còn lại). Xác định mặt (a, b, c) bạn cần tìm.
Ví dụ, cho một cạnh huyền bằng 5 và cho một chân bằng 3. Trong trường hợp này, bạn cần tìm chân thứ hai. Chúng ta sẽ quay lại ví dụ này sau.
Nếu hai cạnh còn lại chưa biết thì cần tìm độ dài của một trong hai cạnh chưa biết để có thể áp dụng định lý Pitago. Để làm điều này, hãy sử dụng hàm lượng giác(nếu bạn được cho giá trị của một trong các góc xiên).
Thay vào công thức a 2 + b 2 = c 2 các giá trị đã cho (hoặc các giá trị bạn tìm thấy). Hãy nhớ rằng a và b là chân và c là cạnh huyền.
Trong ví dụ của chúng tôi, hãy viết: 3² + b² = 5².
Vuông mỗi cạnh mà bạn biết. Hoặc để lại các độ – bạn có thể bình phương các số sau đó.
Trong ví dụ của chúng tôi, hãy viết: 9 + b² = 25.
Cô lập mặt không xác định về một phía của phương trình.Để làm điều này, hãy chuyển giá trị đã biết về phía bên kia của phương trình. Nếu bạn tìm thấy cạnh huyền, thì trong định lý Pitago, nó đã được cô lập về một phía của phương trình (vì vậy không cần phải làm gì).
Trong ví dụ của chúng tôi, hãy di chuyển 9 sang vế phải của phương trình để tách b² chưa biết. Bạn sẽ nhận được b² = 16.
Lấy lại Căn bậc hai từ cả hai vế của phương trình sau khi có một ẩn số (bình phương) ở một phía của phương trình và một số bị chặn ở phía kia.
Trong ví dụ của chúng ta, b² = 16. Lấy căn bậc hai của cả hai vế của phương trình và nhận được b = 4. Vì vậy, chân thứ hai là 4.
Sử dụng định lý Pitago trong Cuộc sống hàng ngày, vì nó có thể được sử dụng trong một số lượng lớn các tình huống thực tế. Để làm được điều này, hãy học cách nhận biết hình tam giác vuông trong cuộc sống hàng ngày – trong bất kỳ tình huống nào trong đó hai đối tượng (hoặc đường thẳng) cắt nhau ở góc vuông và đối tượng thứ ba (hoặc đường thẳng) nối (theo đường chéo) các đỉnh của hai đối tượng đầu tiên (hoặc đường thẳng), bạn có thể sử dụng định lý Pitago để tìm vế chưa biết (nếu biết hai vế còn lại).
Ví dụ: cho một cầu thang dựa vào một tòa nhà. Phần dưới cùng cầu thang cách chân tường 5 mét. Phần trên cùng cầu thang cách mặt đất 20 mét (lên tường). Cầu thang dài bao nhiêu?
“Cách chân tường 5 mét” có nghĩa là a = 5; “Cách mặt đất 20 mét” có nghĩa là b = 20 (nghĩa là bạn có hai chân của một tam giác vuông, vì bức tường của tòa nhà và bề mặt Trái đất cắt nhau vuông góc). Chiều dài của cái thang là chiều dài của cạnh huyền, chưa biết.
a² + b² = c²
(5) ² + (20) ² = c²
25 + 400 = c²
425 = c²
c = √425
s = 20,6. Như vậy, chiều dài gần đúng của cầu thang là 20,6 mét.
Mọi học sinh đều biết rằng bình phương của cạnh huyền luôn bằng tổng của chân, mỗi cạnh là bình phương. Phát biểu này được gọi là định lý Pitago. Cô ấy là một trong những định lý nổi tiếng lượng giác và toán học nói chung. Chúng ta hãy xem xét nó chi tiết hơn.
Khái niệm về tam giác vuông
Trước khi tiếp tục xem xét định lý Pitago, trong đó bình phương cạnh huyền bằng tổng các chân của bình phương, ta nên xem xét khái niệm và tính chất của tam giác vuông mà định lý có giá trị.
Tam giác – hình phẳng có ba góc và ba cạnh. Một tam giác vuông, như tên gọi của nó, có một góc vuông, tức là góc này là 90 o.
Từ Thuộc tính chungĐối với tất cả các tam giác, biết rằng tổng của cả ba góc của hình này là 180 o, có nghĩa là đối với một tam giác vuông, tổng của hai góc không thẳng là 180 o – 90 o = 90 o. Sự thật cuối cùng có nghĩa là bất kỳ góc nào trong tam giác vuông không vuông sẽ luôn nhỏ hơn 90 o.
Cạnh nằm đối diện với góc vuông được gọi là cạnh huyền. Hai cạnh còn lại là chân của tam giác, chúng có thể bằng nhau hoặc chênh lệch nhau. Từ lượng giác người ta đã biết rằng góc mà cạnh nằm trong tam giác càng lớn thì độ dài cạnh này càng lớn. Điều này có nghĩa là trong một tam giác vuông, cạnh huyền (nằm đối diện với góc 90 o) sẽ luôn lớn hơn bất kỳ chân nào (nằm đối diện với các góc
Ký hiệu toán học của định lý Pitago
Định lý này phát biểu rằng bình phương của cạnh huyền bằng tổng của các chân, mỗi chân trước đó là bình phương. Để viết công thức này một cách toán học, hãy xem xét một tam giác vuông trong đó các cạnh a, b và c lần lượt là hai chân và cạnh huyền. Trong trường hợp này, định lý, được xây dựng dưới dạng bình phương của cạnh huyền bằng tổng bình phương của các chân, có thể được biểu diễn bằng công thức sau: c 2 = a 2 + b 2. Từ đây, có thể thu được các công thức thực hành quan trọng khác: a = √ (c 2 – b 2), b = √ (c 2 – a 2) và c = √ (a 2 + b 2).
Lưu ý rằng trong trường hợp của một hình chữ nhật Tam giác đều, nghĩa là, a = b, công thức: bình phương của cạnh huyền bằng tổng các chân, mỗi chân là bình phương, được viết theo toán học như sau: c 2 = a 2 + b 2 = 2a 2, ngụ ý đẳng thức: c = a√2.
Tham khảo lịch sử
Định lý Pitago, nói rằng bình phương của cạnh huyền bằng tổng các chân, mỗi chân là bình phương, đã được biết đến từ rất lâu trước khi nhà triết học nổi tiếng người Hy Lạp chú ý đến nó. Nhiều giấy cói của Ai Cập cổ đại, cũng như những tấm bảng bằng đất sét của người Babylon, xác nhận rằng những dân tộc này đã sử dụng tính chất lưu ý của các cạnh của một tam giác vuông. Ví dụ, một trong những Kim tự tháp Ai Cập, kim tự tháp Khafre, được xây dựng từ thế kỷ XXVI trước Công nguyên (2000 năm trước cuộc đời của Pythagoras), được xây dựng dựa trên kiến thức về tỷ lệ khung hình trong một tam giác vuông 3x4x5.
Vậy thì tại sao bây giờ định lý lại được đặt tên theo tiếng Hy Lạp? Câu trả lời rất đơn giản: Pythagoras là người đầu tiên chứng minh định lý này bằng toán học. Ở Babylon và Ai Cập còn sót lại nguồn văn bản nó chỉ nói về việc sử dụng nó, nhưng không có bằng chứng toán học nào được đưa ra.
Người ta tin rằng Pythagoras đã chứng minh định lý đang được xem xét bằng cách sử dụng các tính chất của các tam giác đồng dạng, mà ông thu được bằng cách vẽ chiều cao của một tam giác vuông từ một góc 90o đến cạnh huyền.
Một ví dụ về việc sử dụng định lý Pitago
Xem xét nhiệm vụ đơn giản: cần xác định chiều dài của cầu thang nghiêng L, nếu biết nó có chiều cao H = 3 mét, và khoảng cách từ tường dựa vào chân cầu thang là P = 2,5 mét.
V trường hợp này H và P là chân và L là cạnh huyền. Vì độ dài của cạnh huyền bằng tổng bình phương của các chân nên ta nhận được: L 2 = H 2 + P 2, khi đó L = √ (H 2 + P 2) = √ (3 2 + 2,5 2) = 3,905 mét hoặc 3 m và 90, 5 cm.
Định Lý Pytago Và Cách Áp Dụng Định Lý Pitago Làm Bài Tập
Định lý Pytago (hay còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý pitago thuận phát biểu rằng trong 1 tam giác vuông bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh góc vuông. Định lý có thể viết thành một phương trình liên hệ giữa độ dài của các cạnh là a, b và c, thường gọi là công thức Pytago: (c^2=a^2+b^2) (trong đó c độ dài là cạnh huyền, a,b lần lượt là độ dài 2 cạnh góc vuông). Ngoài ra, định lý pitago là một trong 17 phương trình thay đổi thế giới
Như vậy trong bất kì 1 tam giác vuông nào thì bình phương cạnh huyền cũng sẽ bằng tổng bình phương hai cạnh góc vuông.
Theo định lý cho biết, cạnh góc vuông của tam giác kí hiệu là a và b, còn cạnh huyền kí hiệu là c của tam giác vuông đó. Ta luôn có phương trình của định lý Pitago như sau:
(a^2+b^2=c^2) (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)
Từ đó ta có công thức tính cạnh huyền tam giác vuông như sau: c=√(a²+b²) với c là cạnh huyền và a, b là độ dài 2 cạnh tam giác vuông
2. Cách chứng minh định lý pitago
Ở hình trên ta có 2 hình vuông lớn có diện tích bằng nhau là: (a+b)^2
Trong mỗi hình lại có 4 tam giác vuông bằng nhau có diện băng nhau là 1/2(a.b). Do đó diện tích khoảng trắng của 2 hình sẽ bằng nhau.
Như vậy, diện tích của hình vuông c sẽ bằng tổng diện tích của 2 hình vuông a và b nên ta có: (c^2=a^2+b^2)
3. Định lý pitago đảo
3.1. Khái niệm
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.
Định lý Pytago đảo được sử dụng rất phổ biến cũng như gồm nhiều ứng dụng trong thực tiễn. Đây là một định lý toán học quan trọng hàng đầu của hình học cơ bản.
3.2. Chứng minh định lý pytago đảo
Gọi ABC là tam giác với các cạnh a, b, và c, với (a^2+b^2=c^2). Dựng một tam giác thứ hai có các cạnh bằng a và b và góc vuông tạo bởi giữa chúng. Theo định lý Pytago thuận, cạnh huyền của tam giác vuông thứ hai này sẽ bằng c=√(a²+b²) và bằng với cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác có ba cạnh tương ứng cùng bằng chiều dài a, b và c, do vậy hai tam giác này phải bằng nhau. Do đó góc giữa các cạnh a và b ở tam giác đầu tiên phải là góc vuông.
Chứng minh định lý pytago đảo ở trên sử dụng chính định lý Pytago. Cũng có thể chứng minh định lý đảo mà không cần sử dụng tới định lý thuận.
Nếu
(a^2 + b^2 = c^2)
, thì tam giác là tam giác vuông.
Nếu
(a^2 + b^2 < c^2)
, thì nó là tam giác tù.
4. Những điều cần lưu ý khi học định lý Pitago
Khi học định lý Pitago, để nắm chắc và áp dụng tốt trong quá trình làm và giải các bài tập, bạn cần lưu ý các điều sau:
* Cạnh huyền của tam giác vuông luôn:
Cắt ngang qua góc vuông mà không đi qua góc vuông
Đây là cạnh dài nhất của tam giác vuông
Cạnh huyền được gọi là C trong định lý Pitago
* Khi tính, bạn cần phải kiểm tra lại kết quả.
* Nhìn vào hình, bạn sẽ biết đâu là cạnh huyền vì đó là cạnh dài nhất đối diện góc lớn nhất. Còn cạnh ngắn nhất sẽ đối diện góc nhỏ nhất của tam giác.
* Ta chỉ tính được cạnh thứ 3 khi biết độ dài 2 cạnh còn lại trong tam giác vuông
* Nếu tam giác không phải là tam giác vuông, ta không thể áp dụng định lý pitago mà sẽ tính được khi biết thêm thông tin ngoài chiều dài 2 cạnh.
* Bạn nên vẽ tam giác để dễ dàng gán giá trị chính xác cho các cạnh a, b và c. Đặc biệt, các bài toán từ và toán logic áp dụng nhiều hơn cả.
* Nếu chỉ biết số đo một cạnh, ta không thể dùng định lý pitago để tính mà sẽ phải dùng hàm lượng giác (sin, cos, tan) hoặc tỉ lệ 30-60-90 / 45-45-90.
Đây là những lưu ý quan trọng để bạn có thể sử dụng định lý một cách linh hoạt cũng như trong những điều kiện nào thì không thể áp dụng được.
5. Cách áp dụng định lý pitago
5. 1. Cách tìm các cạnh của tam giác vuông
Dựa theo định lý Pitago, ta sẽ cùng đi tìm các cạnh của tam giác vuông theo các bước sau:
Bước 1: Điều kiện tam giác đang xét phải là tam giác vuông
Định lý Pitago chỉ áp dụng được cho trường hợp tam giác vuông. Vì vậy, để tìm được các cạnh của tam giác vuông, hình tam giác đó phải có điều kiện là tam giác vuông với một góc bằng 90 độ. Bạn có thể tìm thấy dấu hiệu hình tam giác vuông trên hình vẽ rất dễ dàng.
Bước 2: Chỉ ra được các cạnh của hình tam giác vuông
Nhìn vào hình, bạn hãy chỉ ra 2 cạnh góc vuông và cạnh huyền. Cạnh luôn đối diện với góc vuông, là cạnh dài nhất sẽ là cạnh huyền. Hai cạnh ngắn hơn sẽ mặc định là 2 cạnh góc vuông. Ví dụ nếu tam giác ABC có cạnh góc vuông là ABC thì cạnh góc vuông là cạnh AB và BC còn cạnh huyền là AC. Theo định lý Pitago, a, b là kí hiệu của 2 cạnh góc vuông, c là kí hiệu của cạnh huyền.
Bước 3: Xác định cạnh huyền cần tìm của tam giác vuông đó
Với định lý Pitago, ta có thể tìm được độ dài bất kỳ của cạnh của một tam giác vuông nào bằng công thức trên chỉ cần biết chiều dài 2 cạnh còn lại: (a^2+b^2=c^2). Có nghĩa là bạn sẽ xác định cạnh chưa biết là a, b hay c. Nếu đã biết độ dài của 2 cạnh và 1 cạnh chưa biết của hình tam giác, bạn có thể bắt đầu.
Ví dụ: Nếu bạn đã biết cạnh huyền và một trong các cạnh bên còn lại sẽ dễ dàng tính được cạnh thứ 3 theo công thức ở trên.
Nếu có hai cạnh chưa biết độ dài, bạn cần xác định một cạnh nữa mới có thể sử dụng định lý Pitago. Bạn sẽ dùng các hàm lượng giác cơ bản để tìm độ dài của một cạnh nữa nếu biết số đo của một góc nhọn trong tam giác đó.
Bước 4: Thay giá trị độ dài 2 cạnh vào phương trình (a^2+b^2=c^2)
Trong đó, a, b là hai cạnh góc vuông, c là cạnh huyền. Nếu a = 3, c = 5 ta có (3^2 + b^2 = 5^2)
Bước 5: Tính bình phương
Giải phương trình, bạn tính bình phương mỗi cạnh đã biết. Nếu đơn giản, bạn để ở dạng số mũ rồi tính sau. Trong ví dụ này, bình phương lên ta được 9 + (b^2) = 25
Bước 6: Tách biến chưa biết sang một vế của phương trình
Bước 7: Giảm bình phương của cả hai vế phương trình
Kết quả (b^2) = 16 cho thấy một vế của phương trình còn một biến bình phương còn vế kia là một số xác định. Giảm bình phương của cả 2 vế ta sẽ được b = 4. Như vậy kết quả của bài toán là 4, chiều dài số đo của cạnh cần tìm.
Bước 8: Sử dụng định lý Pitago để tìm cạnh của tam giác vuông trong thực tế
Định lý Pitago được sử dụng rất nhiều trong thực tế. Vì vậy, bạn chỉ cần nhận biết tam giác vuông trong thực tế trong bất kỳ trường hợp nào. Áp dụng vào thực tế cuộc sống, chỉ cần 2 đường thẳng giao nhau hoặc 2 vật giao nhau tạo ra một góc vuông đồng thời có một đường thẳng hay vật thứ 3 cắt chéo qua góc vuông đã tạo ra một hình tam giác vuông. Từ đó, bạn có thể sử dụng định lý pitago tìm độ dài cạnh nào đó khi biết số đo 2 cạnh còn lại.
5. 2. Cách tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y
Khi đã biết 2 tọa độ (x,y) là (6, 1), (3, 5), ta sẽ tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y theo các bước sau:
Bước 1: Xác định 2 điểm trong mặt phẳng X-Y
Dựa vào định lý Pitago, ta dễ dàng tính được khoảng cách đường thẳng giữa 2 điểm trong mặt phẳng X-Y. Lúc này, ta chỉ cần biết tọa độ x và y của 2 điểm bất kỳ. Bình thường tọa độ x, y sẽ được viết theo cặp thứ tự là tọa độ (x,y)
Muốn tìm khoảng cách giữa 2 điểm này, ta coi mỗi điểm là một trong những góc nhọn của tam giác vuông để thực hiện tính số đo chiều dài cạnh a, cạnh b sau đó tính tiếp độ dài cạnh c là khoảng cách giữa 2 điểm.
Bước 2: Vẽ 2 điểm trên đồ thị
Tọa độ (x, y) trên mặt phẳng X-Y, trong đó x là tọa độ trên trục hoành, y là tọa độ trên trục tung. Từ đó, bạn có thể tìm khoảng cách giữa 2 điểm mà không cần vẽ đồ thị. Vẽ đồ thị ra, hình vẽ sẽ giúp ta nhìn trực quan và rõ ràng hơn rất nhiều.
Bước 3: Tìm độ dài các cạnh góc vuông của tam giác
Như vậy, hai cạnh còn lại của tam giác vuông này là a = 3, b = 4.
Bước 4: Dùng định lý pitago giải phương trình tìm cạnh huyền
Ở ví dụ ở trên, ta biết cạnh huyền là khoảng cách giữa 2 điểm của hình tam giác và tìm được 2 cạnh góc vuông còn lại ở trên. Bây giờ, chúng ta tìm cạnh huyền khi biết độ dài 2 cạnh góc vuông mà ta đặt là cạnh a và cạnh b.
Bạn đang xem bài viết Định Lý Pitago (Pythagoras Theorem) trên website Tvzoneplus.com. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!